91 research outputs found

    Adaptive Differential Feedback in Time-Varying Multiuser MIMO Channels

    Full text link
    In the context of a time-varying multiuser multiple-input-multiple-output (MIMO) system, we design recursive least squares based adaptive predictors and differential quantizers to minimize the sum mean squared error of the overall system. Using the fact that the scalar entries of the left singular matrix of a Gaussian MIMO channel becomes almost Gaussian distributed even for a small number of transmit antennas, we perform adaptive differential quantization of the relevant singular matrix entries. Compared to the algorithms in the existing differential feedback literature, our proposed quantizer provides three advantages: first, the controller parameters are flexible enough to adapt themselves to different vehicle speeds; second, the model is backward adaptive i.e., the base station and receiver can agree upon the predictor and variance estimator coefficients without explicit exchange of the parameters; third, it can accurately model the system even when the correlation between two successive channel samples becomes as low as 0.05. Our simulation results show that our proposed method can reduce the required feedback by several kilobits per second for vehicle speeds up to 20 km/h (channel tracker) and 10 km/h (singular vector tracker). The proposed system also outperforms a fixed quantizer, with same feedback overhead, in terms of bit error rate up to 30 km/h.Comment: IEEE 22nd International Conference on Personal, Indoor and Mobile Radio Communications (2011

    Analyzing the Reduced Required BS Density due to CoMP in Cellular Networks

    Full text link
    In this paper we investigate the benefit of base station (BS) cooperation in the uplink of coordinated multi-point (CoMP) networks. Our figure of merit is the required BS density required to meet a chosen rate coverage. Our model assumes a 2-D network of BSs on a regular hexagonal lattice in which path loss, lognormal shadowing and Rayleigh fading affect the signal received from users. Accurate closed-form expressions are first presented for the sum-rate coverage probability and ergodic sum-rate at each point of the cooperation region. Then, for a chosen quality of user rate, the required density of BS is derived based on the minimum value of rate coverage probability in the cooperation region. The approach guarantees that the achievable rate in the entire coverage region is above a target rate with chosen probability. The formulation allows comparison between different orders of BS cooperation, quantifying the reduced required BS density from higher orders of cooperation.Comment: Accepted for presentation in IEEE Globecom Conf., to be held in Atlanta, USA, Dec. 2013. arXiv admin note: text overlap with arXiv:1302.159

    Information Rates of ASK-Based Molecular Communication in Fluid Media

    Get PDF
    This paper studies the capacity of molecular communications in fluid media, where the information is encoded in the number of transmitted molecules in a time-slot (amplitude shift keying). The propagation of molecules is governed by random Brownian motion and the communication is in general subject to inter-symbol interference (ISI). We first consider the case where ISI is negligible and analyze the capacity and the capacity per unit cost of the resulting discrete memoryless molecular channel and the effect of possible practical constraints, such as limitations on peak and/or average number of transmitted molecules per transmission. In the case with a constrained peak molecular emission, we show that as the time-slot duration increases, the input distribution achieving the capacity per channel use transitions from binary inputs to a discrete uniform distribution. In this paper, we also analyze the impact of ISI. Crucially, we account for the correlation that ISI induces between channel output symbols. We derive an upper bound and two lower bounds on the capacity in this setting. Using the input distribution obtained by an extended Blahut-Arimoto algorithm, we maximize the lower bounds. Our results show that, over a wide range of parameter values, the bounds are close.Comment: 31 pages, 8 figures, Accepted for publication on IEEE Transactions on Molecular, Biological, and Multi-Scale Communication

    Grassmannian Beamforming for MIMO Amplify-and-Forward Relaying

    Full text link
    In this paper, we derive the optimal transmitter/ receiver beamforming vectors and relay weighting matrix for the multiple-input multiple-output amplify-and-forward relay channel. The analysis is accomplished in two steps. In the first step, the direct link between the transmitter (Tx) and receiver (Rx) is ignored and we show that the transmitter and the relay should map their signals to the strongest right singular vectors of the Tx-relay and relay-Rx channels. Based on the distributions of these vectors for independent identically distributed (i.i.d.) Rayleigh channels, the Grassmannian codebooks are used for quantizing and sending back the channel information to the transmitter and the relay. The simulation results show that even a few number of bits can considerably increase the link reliability in terms of bit error rate. For the second step, the direct link is considered in the problem model and we derive the optimization problem that identifies the optimal Tx beamforming vector. For the i.i.d Rayleigh channels, we show that the solution to this problem is uniformly distributed on the unit sphere and we justify the appropriateness of the Grassmannian codebook (for determining the optimal beamforming vector), both analytically and by simulation. Finally, a modified quantizing scheme is presented which introduces a negligible degradation in the system performance but significantly reduces the required number of feedback bits.Comment: Submitted to IEEE Journal of Selected Areas in Communications, Special Issue on Exploiting Limited Feedback in Tomorrows Wireless Communication Network
    • …
    corecore